Chimie

Structure fine des spectres atomiques

Structure fine des spectres atomiques


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Mouvement orbital et moment magnétique

Lorsqu'une particule chargée se déplace sur un chemin circulaire, un courant circule qui crée un champ magnétique. Celui-ci a la forme d'un champ magnétique dipolaire (dipôle), dont la force peut être décrite par son moment magnétique. Il existe un lien entre le moment angulaire orbital (moment angulaire) de cette particule et le moment magnétique généré par son mouvement, ce qui est fondamental pour comprendre la structure fine des spectres atomiques.

La force du champ magnétique est proportionnelle à la vitesse v et donc au moment cinétique je. Ce qui suit s'applique :

??=q2mje=??je.q = charge électrique de la particulem = Masse de la particule

Le facteur de proportionnalité ?? est appelé facteur gyromagnétique.

Dans le cas des électrons dans un atome, il est pratique d'utiliser le magnéton de Bohr??B. Présenter:

??=e??2mje??=??B.je????B.=e??2me = Charge de l'électron??=H2?? = quantum d'action de Planck / 2??

Comme pour le moment angulaire, il en va de même ici que seules la quantité et un composant (par exemple dans la direction z) peuvent être mesurés avec précision en même temps. Vous obtenez alors

|??|=??B.|je|??=??B.je(je+1)|??z|=??B.|jez|??=??B.m|je|=??je(je+1)|jez|=m??

avec les nombres quantiques je (Nombre quantique de moment angulaire orbital, nombre quantique secondaire) et m (nombre quantique magnétique, nombre quantique).


Structure hyperfine

Structure hyperfine, HFS, le dédoublement supplémentaire des raies spectrales des atomes ou des molécules au-delà de la structure fine. Les divisions de structure hyperfine sont environ un facteur 10 -3 plus petites que les divisions de structure fine et se situent donc dans la gamme d'énergie 10 -5 eV. La structure hyperfine est causée par deux phénomènes différents :

1) à travers le Interaction des électrons avec les moments nucléaires. Les moments nucléaires comprennent les moments magnétiques (dipôles) du noyau atomique et les moments quadripolaires électriques moins importants. Les moments quadripolaires résultent d'une déviation de la forme du noyau par rapport à la forme sphérique

2) à travers Déplacements isotopiques dans les spectres atomiques. Il ne s'agit que d'une division des raies dans un mélange d'isotopes, et non d'un effet affectant l'atome individuel.

L'interféromètre Fabry-P & # 233red est le mieux adapté pour les examens de la structure hyperfine. À l'aide de la méthode de résonance de faisceau atomique, les divisions de structure hyperfines peuvent être mesurées directement.

La structure hyperfine (sans déplacement isotopique) apparaît dans les raies spectrales de tous les atomes dont le noyau a un nombre impair de masses, ainsi que dans 2 D et 14 N, qui sont tous des noyaux de spin nucléaire différent de zéro. La principale cause de la structure hyperfine est l'interaction des électrons de la couche avec le moment dipolaire magnétique du noyau atomique. Étant donné que ces moments de noyau sont environ un facteur 10 -3 plus petits que les moments de coque, la division entière de la structure hyperfine est également plus petite de ce facteur que la structure fine. La direction du moment nucléaire passe par le spin nucléaire JE., la taille et la direction du champ magnétique généré par les électrons au niveau du noyau H par le moment cinétique total J la coquille est déterminée. Lors de l'appairage JE. et J au moment cinétique atomique total F. & # 8211 selon le modèle vectoriel et tout à fait analogue au couplage de L. et S. dans le couplage Russell-Saunders pour l'interprétation de la structure fine & # 8211 a l'énergie d'interaction magnétique selon l'équation

des valeurs différentes pour les différentes attitudes de rotation du noyau et de la coque les unes par rapport aux autres. Cela signifie mJE. le moment central, μK le magnéton nucléaire, g le facteur gyromagnétique du noyau, JE. le nombre quantique de spin nucléaire. Tous les termes d'un multiplet de structure hyperfine ont les mêmes nombres quantiques JE. et J, mais des nombres quantiques différents F. du moment cinétique atomique total, toutes les valeurs entières ou demi-entières comprises entre

et (J + JE.) traverser. Les composantes observées correspondent à la règle de sélection & # 916F. = 0 ou & # 1771 0 & # 8211 0 interdit. L'analyse des divisions de structure hyperfine mesurées fournit le nombre quantique du spin nucléaire JE., ainsi que les moments magnétiques ou le facteur gyromagnétique des noyaux, si le champ magnétique de la couche électronique à l'emplacement du noyau est connu. Il est calculé à l'aide de données spectrales.

Dans le cas des noyaux non sphériques, il existe un moment quadripolaire électrique supplémentaire Q les noyaux et aussi

fractionnement proportionnel, pour leur taille & # 246 & # 223e Q peut être déterminé. Cependant, cela nécessite des informations sur l'inhomogénéité du champ électrique à l'emplacement du noyau, qui ne peuvent être obtenues qu'avec une faible précision grâce à des calculs théoriques.

Le moment angulaire total est traité dans un champ magnétique & # 228u & # 223er F. autour de la direction du champ en 2F. + 1 réglages différents tant que l'énergie magnétique supplémentaire est faible par rapport à la division de la structure hyperfine sans champ. En raison de leur petite taille, cependant, le découplage se produit même avec des champs relativement faibles J et JE. au. Le résultat est partiel Effet paschen-back (même Retour Effet Goudsmit appelé) : Les composantes de l'effet Zeeman anormal de la structure fine (mJE.) montre une scission en 2JE. + 1 composantes équidistantes de l'ordre de grandeur de la structure hyperfine sans champ.

Les mesures de l'effet Zeeman de la structure hyperfine permettent de déterminer JE. ils ne fournissent aucune information supplémentaire sur le moment magnétique nucléaire.



Structure hyperfine : Fractionnement hyperfin d'un état avec J = 3/2 et JE. = 3 / 2. A droite se trouvent les valeurs numériques du nombre quantique F. ainsi que la 2e annéeF. + 1 selon la dégénérescence mF. spécifié.

Avis des lecteurs

Si vous avez des commentaires sur le contenu de cet article, vous pouvez en informer la rédaction par e-mail. Nous avons lu votre lettre, mais nous vous demandons de comprendre que nous ne pouvons pas répondre à tout le monde.

Personnel Volume I et II

Silvia Barnert
Dr. Matthias Delbrück
Dr. Glace Reinald
Nathalie Fischer
Walter Greulich (éditeur)
Carsten Heinisch
Sonja Nagel
Dr. Gunnar Radons
MS (optique) Lynn Schilling-Benz
Dr. Joachim Schüller

Christine Weber
Ulrich Kilian

L'abréviation de l'auteur est entre crochets, le nombre entre parenthèses est le numéro du domaine, une liste des domaines se trouve dans l'avant-propos.

Katja Bammel, Berlin [KB2] (A) (13)
Prof. Dr. W. Bauhofer, Hambourg (B) (20, 22)
Sabine Baumann, Heidelberg [SB] (A) (26)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Francfort [HB1] (A, B) (29)
Prof. Dr. Klaus Bethge, Francfort (B) (18)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Angela Burchard, Genève [AB] (A) (20, 22)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Heidelberg [FE] (A) (27 Essai Biophysique)
Dr. Roger Erb, Cassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Dr. Andreas Faulstich, Oberkochen [AF4] (A) (Essai sur l'optique adaptative)
Prof. Dr. Rudolf Feile, Darmstadt (B) (20, 22)
Stephan Fichtner, Dossenheim [SF] (A) (31)
Dr. Thomas Filk, Fribourg [TF3] (A) (10, 15)
Natalie Fischer, Dossenheim [NF] (A) (32)
Prof. Dr. Klaus Fredenhagen, Hambourg [KF2] (A) (Essai Algebraic Quantum Field Theory)
Thomas Fuhrmann, Heidelberg [TF1] (A) (14)
Christian Fulda, Heidelberg [CF] (A) (07)
Frank Gabler, Francfort [FG1] (A) (22 essais sur les systèmes de traitement de données pour les futures expériences sur les hautes énergies et les ions lourds)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Göttingen [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzbourg [MG1] (A, B) (01, 16 essai théorie fonctionnelle de la densité)
Prof. Dr. Hellmut Haberland, Fribourg [HH4] (A) (Essay Cluster Physics)
Dr. Andreas Heilmann, Chemnitz [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Jens Hoerner, Hanovre [JH] (A) (20)
Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Ulrich Kilian, Hambourg [Royaume-Uni] (A) (19)
Thomas Kluge, Mayence [TK] (A) (20)
Achim Knoll, Strasbourg [AK1] (A) (20)
Andreas Kohlmann, Heidelberg [AK2] (A) (29)
Dr. Barbara Kopff, Heidelberg [BK2] (A) (26)
Dr. Bernd Krause, Karlsruhe [BK1] (A) (19)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Dr. Andreas Markwitz, Dresde [AM1] (A) (21)
Holger Mathiszik, Bensheim [HM3] (A) (29)
Mathias Mertens, Mayence [MM1] (A) (15)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Warwick, Royaume-Uni [RM1] (A) (23)
Helmut Milde, Dresde [HM1] (A) (09 Essai Acoustique)
Guenter Milde, Dresde [GM1] (A) (12)
Maritha Milde, Dresde [MM2] (A) (12)
Dr. Christopher Monroe, Boulder, USA [CM] (A) (Essai Atom and Ion Traps)
Dr. Andreas Müller, Kiel [AM2] (A) (33 essai de physique au quotidien)
Dr. Nikolaus Nestlé, Ratisbonne [NN] (A) (05)
Dr. Thomas Otto, Genève [TO] (A) (06 Essai Mécanique analytique)
Prof. Dr. Harry Paul, Berlin [HP] (A) (13)
Cand. Phys. Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Prof. Dr. Ulrich Platt, Heidelberg [UP] (A) (Essai Atmosphère)
Dr. Oliver Probst, Monterrey, Mexique [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14 Essai Théorie Générale de la Relativité)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Prof. Dr. Günter Radons, Stuttgart [GR2] (A) (11)
Oliver Rattunde, Fribourg [OR2] (A) (16 essais sur la physique des clusters)
Dr. Karl-Henning Rehren, Göttingen [KHR] (A) (Essai Algebraic Quantum Field Theory)
Ingrid Reiser, Manhattan, États-Unis [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Prof. Dr. Hermann Rietschel, Karlsruhe [HR1] (A, B) (23)
Dr. Peter Oliver Roll, Mayence [OR1] (A, B) (04, 15 distributions d'essais)
Hans-Jörg Rutsch, Heidelberg [HJR] (A) (29)
Dr. Margit Sarstedt, Newcastle upon Tyne, Royaume-Uni [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Prof. Dr. Arthur Scharmann, Giessen (B) (06, 20)
Dr. Arne Schirrmacher, Munich [AS5] (A) (02)
Christina Schmitt, Fribourg [CS] (A) (16)
Cand. Phys. Jörg Schuler, Karlsruhe [JS1] (A) (06, 08)
Dr. Joachim Schüller, Mayence [JS2] (A) (10 dissertation mécanique analytique)
Prof. Dr. Heinz-Georg Schuster, Kiel [HGS] (A, B) (11 essai Chaos)
Richard Schwalbach, Mayence [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, Munich [KS] (A, B) (07, 20)
Cornelius Suchy, Bruxelles [CS2] (A) (20)
William J. Thompson, Chapel Hill, États-Unis [JMJ] (A) (Essay Computers in Physics)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Dipl.-Géophys. Rolf vom Stein, Cologne [RVS] (A) (29)
Patrick Voss-de Haan, Mayence [PVDH] (A) (17)
Thomas Wagner, Heidelberg [TW2] (A) (29 essai atmosphère)
Manfred Weber, Francfort [MW1] (A) (28)
Markus Wenke, Heidelberg [MW3] (A) (15)
Prof. Dr. David Wineland, Boulder, USA [DW] (A) (Essai Atom and Ion Traps)
Dr. Harald Wirth, Saint Genis-Pouilly, F [HW1] (A) (20) Steffen Wolf, Fribourg [SW] (A) (16)
Dr. Michael Zillgitt, Francfort [MZ] (A) (02)
Prof. Dr. Helmut Zimmermann, Iéna [HZ] (A) (32)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)

Dr. Ulrich Kilian (responsable)
Christine Weber

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

L'abréviation de l'auteur est entre crochets, le nombre entre parenthèses est le numéro du domaine, une liste des domaines se trouve dans l'avant-propos.

Markus Aspelmeyer, Munich [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Francfort [HB1] (A, B) (29)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Ulf Borgeest, Hambourg [UB2] (A) (Essay Quasars)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Karl Eberl, Stuttgart [KE] (A) (essai d'épitaxie par faisceau moléculaire)
Dr. Dietrich Einzel, Garching [DE] (A) (20)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Vienne [FE] (A) (27)
Dr. Roger Erb, Kassel [RE1] (A) (33 essai Phénomènes optiques dans l'atmosphère)
Dr. Christian Eurich, Brême [CE] (A) (Réseaux de neurones d'essai)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Fribourg [TF3] (A) (10, 15 essai théorie de la percolation)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Harald Fuchs, Münster [HF] (A) (Essay Scanning Probe Microscopy)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hanovre [CF] (A) (07)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Prof. Dr. Gerd Graßhoff, Berne [GG] (A) (02)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzbourg [MG1] (B) (01, 16)
Gunther Hadwich, Munich [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Christoph Heinze, Hambourg [CH3] (A) (29)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Florian Herold, Munich [FH] (A) (20)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Georg Hoffmann, Gif-sur-Yvette, FR [GH1] (A) (29)
Dr. Gert Jacobi, Hambourg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Catherine Journet, Stuttgart [CJ] (A) (Essai nanotubes)
Prof. Dr. Josef Kallrath, Ludwigshafen, [JK] (A) (04 Essai Méthodes numériques en physique)
Priv.-Doz. Dr. Claus Kiefer, Fribourg [CK] (A) (14, 15 Essai Quantum Gravity)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [Royaume-Uni] (A) (19)
Dr. Uwe Klemradt, Munich [UK1] (A) (20, essai sur les transitions de phase et les phénomènes critiques)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, États-Unis [AK3] (A) (02)
Dr. Berndt Koslowski, Ulm [BK] (A) (Essai de physique des surfaces et des interfaces)
Dr. Bernd Krause, Munich [BK1] (A) (19)
Dr. Jens Kreisel, Grenoble [JK2] (A) (20)
Dr. Gero Kube, Mayence [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdebourg [VL] (A) (04)
Priv.-Doz. Dr. Axel Lorke, Munich [AL] (A) (20)
Dr. Andreas Markwitz, Lower Hutt, Nouvelle-Zélande [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Prof. Dr. Karl von Meyenn, Munich [KVM] (A) (02)
Dr. Rudi Michalak, Augsbourg [RM1] (A) (23)
Helmut Milde, Dresde [HM1] (A) (09)
Günter Milde, Dresde [GM1] (A) (12)
Marita Milde, Dresde [MM2] (A) (12)
Dr. Andreas Müller, Kiel [AM2] (A) (33)
Dr. Nikolaus Nestle, Leipzig [NN] (A, B) (05, 20 essais sur l'épitaxie par faisceaux moléculaires, la physique des surfaces et des interfaces et la microscopie à sonde à balayage)
Dr. Thomas Otto, Genève [À] (A) (06)
Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexique [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14)
Dr. Andrea Quintel, Stuttgart [AQ] (A) (Essai sur les nanotubes)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15 Essais Informatique Quantique)
Robert Raussendorf, Munich [RR1] (A) (19)
Ingrid Reiser, Manhattan, États-Unis [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15 essais sur la mécanique quantique et ses interprétations)
Prof. Dr. Siegmar Roth, Stuttgart [SR] (A) (Essai sur les nanotubes)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Dr. Margit Sarstedt, Louvain, B [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Michael Schmid, Stuttgart [MS5] (A) (Essai sur les nanotubes)
Dr. Martin Schön, Constance [MS] (A) (14)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mayence [RS2] (A) (17)
Prof. Dr. Paul Steinhardt, Princeton, USA [PS] (A) (essai sur les quasicristaux et les quasi-cellules unitaires)
Prof. Dr. Klaus Stierstadt, Munich [KS] (B)
Dr. Siegmund Stintzing, Munich [ES1] (A) (22)
Cornelius Suchy, Bruxelles [CS2] (A) (20)
Dr. Volker Theileis, Munich [VT] (A) (20)
Prof. Dr. Gerald 't Hooft, Utrecht, NL [GT2] (A) (essai renormalisation)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Rolf vom Stein, Cologne [RVS] (A) (29)
Patrick Voss-de Haan, Mayence [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Dr. Hildegard Wasmuth-Fries, Ludwigshafen [HWF] (A) (26)
Manfred Weber, Francfort [MW1] (A) (28)
Priv.-Doz. Dr. Burghard Weiss, Lübeck [BW2] (A) (02)
Prof. Dr. Klaus Winter, Berlin [KW] (A) (essai sur la physique des neutrinos)
Dr. Achim Wixforth, Munich [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, États-Unis [SO] (A) (16)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23 essai supraconducteurs organiques)
Priv.-Doz. Dr. Jörg Zegenhagen, Stuttgart [JZ3] (A) (21 essais de reconstructions de surfaces)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, Munich [WZ] (A) (20)

Dr. Ulrich Kilian (responsable)
Christine Weber

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

L'abréviation de l'auteur est entre crochets, le nombre entre parenthèses est le numéro du domaine, une liste des domaines se trouve dans l'avant-propos.

Prof. Dr. Klaus Andres, Garching [KA] (A) (10)
Markus Aspelmeyer, Munich [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Francfort [HB1] (A, B) (29 Essai Sismologie)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Prof. Dr. Martin Dressel, Stuttgart (A) (essai sur les ondes de densité de spin)
Dr. Michael Eckert, Munich [ME] (A) (02)
Dr. Dietrich Einzel, Garching (A) (essai supraconductivité et superfluidité)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Vienne [FE] (A) (27)
Dr. Roger Erb, Cassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Fribourg [TF3] (A) (10, 15)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hanovre [CF] (A) (07)
Frank Gabler, Francfort [FG1] (A) (22)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Prof. Dr. Henning Genz, Karlsruhe [HG2] (A) (Essais Symétrie et Vide)
Dr. Michael Gerding, Potsdam [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Gunther Hadwich, Munich [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Dr. Sascha Hilgenfeldt, Cambridge, États-Unis (A) (essai sonoluminescence)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Gert Jacobi, Hambourg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Prof. Dr. Josef Kallrath, Ludwigshafen [JK] (A) (04)
Priv.-Doz. Dr. Claus Kiefer, Fribourg [CK] (A) (14, 15)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [Royaume-Uni] (A) (19)
Thomas Kluge, Juliers [TK] (A) (20)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, États-Unis [AK3] (A) (02)
Dr. Bernd Krause, Munich [BK1] (A) (19)
Dr. Gero Kube, Mayence [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdebourg [VL] (A) (04)
Dr. Anton Lerf, Garching [AL1] (A) (23)
Dr. Detlef Lohse, Twente, NL (A) (essai sonoluminescence)
Priv.-Doz. Dr. Axel Lorke, Munich [AL] (A) (20)
Prof. Dr. Jan Louis, Halle (A) (essai théorie des cordes)
Dr. Andreas Markwitz, Lower Hutt, Nouvelle-Zélande [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Dresde [RM1] (A) (23 essai de physique des basses températures)
Günter Milde, Dresde [GM1] (A) (12)
Helmut Milde, Dresde [HM1] (A) (09)
Marita Milde, Dresde [MM2] (A) (12)
Prof. Dr. Andreas Müller, Trèves [AM2] (A) (33)
Prof. Dr. Karl Otto Münnich, Heidelberg (A) (Essai de physique de l'environnement)
Dr. Nikolaus Nestlé, Leipzig [NN] (A, B) (05, 20)
Dr. Thomas Otto, Genève [À] (A) (06)
Priv.-Doz. Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexique [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15)
Robert Raussendorf, Munich [RR1] (A) (19)
Ingrid Reiser, Manhattan, États-Unis [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Prof. Dr. Erhard Scholz, Wuppertal [ES] (A) (02)
Dr. Martin Schön, Konstanz [MS] (A) (14 essai théorie de la relativité restreinte)
Dr. Erwin Schuberth, Garching [ES4] (A) (23)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mayence [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, Munich [KS] (B)
Dr. Siegmund Stintzing, Munich [ES1] (A) (22)
Dr. Berthold Suchan, Giessen [BS] (A) (Dissertation sur la philosophie des sciences)
Cornelius Suchy, Bruxelles [CS2] (A) (20)
Dr. Volker Theileis, Munich [VT] (A) (20)
Prof. Dr. Stefan Theisen, Munich (A) (essai théorie des cordes)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Rolf vom Stein, Cologne [RVS] (A) (29)
Dr. Patrick Voss-de Haan, Mayence [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Manfred Weber, Francfort [MW1] (A) (28)
Dr. Martin Werner, Hambourg [MW] (A) (29)
Dr. Achim Wixforth, Munich [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, États-Unis [SO] (A) (16)
Dr. Stefan L. Wolff, Munich [SW1] (A) (02)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, Munich [WZ] (A) (20)

Articles sur le sujet

Charge.

Structure fine

Structure fine, au sens étroit la structure des niveaux d'énergie atomique ou des raies spectrales résultant de la division par couplage spin-orbite en termes de structure fine (spectre atomique) ces termes diffèrent par le réglage du moment angulaire orbital je

à la direction de rotation (2je + 1 m & # 246 réglages possibles). Le terme est souvent utilisé dans un sens plus large pour différentes divisions dans les spectres moléculaires qui se produisent par le biais d'interactions spin-orbite, d'échanges et magnétiques entre les électrons. Dans la résonance de spin électronique, par exemple, la division fine de la structure des niveaux Zeeman (effet Zeeman) se produit principalement par le biais d'interactions magnétiques et d'échange entre des spins non appariés (par exemple dans les polyradicaux organiques, les ions de terres rares et certains métaux de transition). Contrairement à cela, le champ magnétique beaucoup plus faible du noyau ne provoque que la division de la structure hyperfine beaucoup plus petite. Même la division fine de la structure est presque un million de fois plus petite que l'énergie de l'état elle-même et même presque mille fois plus petite que kB.T à température ambiante.

La description théorique de la structure fine nécessite un traitement mécanique relativiste-quantique, qui a d'abord été réalisé par A. Sommerfeld et au moyen d'une nouvelle constante naturelle α est marqué (constante de structure fine).



Structure fine 1 : Composition de la structure fine fractionnement & # 916E.fs des corrections relativistes (& # 916E.réel), le couplage spin-orbite (& # 916E.LS) et le terme Darwin & # 916E.Darwin.



Structure fine 2 : Décomposition fine de la structure des états de l'atome d'hydrogène (pas normal). Niveaux d'énergie a) sans b) avec division de structure fine.

Avis des lecteurs

Si vous avez des commentaires sur le contenu de cet article, vous pouvez en informer la rédaction par e-mail. Nous avons lu votre lettre, mais nous vous demandons de comprendre que nous ne pouvons pas répondre à tout le monde.

Personnel Volume I et II

Silvia Barnert
Dr. Matthias Delbrück
Dr. Glace Reinald
Nathalie Fischer
Walter Greulich (éditeur)
Carsten Heinisch
Sonja Nagel
Dr. Gunnar Radons
MS (optique) Lynn Schilling-Benz
Dr. Joachim Schüller

Christine Weber
Ulrich Kilian

L'abréviation de l'auteur est entre crochets, le nombre entre parenthèses est le numéro du domaine, une liste des domaines se trouve dans l'avant-propos.

Katja Bammel, Berlin [KB2] (A) (13)
Prof. Dr. W. Bauhofer, Hambourg (B) (20, 22)
Sabine Baumann, Heidelberg [SB] (A) (26)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Francfort [HB1] (A, B) (29)
Prof. Dr. Klaus Bethge, Francfort (B) (18)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Angela Burchard, Genève [AB] (A) (20, 22)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Heidelberg [FE] (A) (27 Essai Biophysique)
Dr. Roger Erb, Cassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Dr. Andreas Faulstich, Oberkochen [AF4] (A) (Essai sur l'optique adaptative)
Prof. Dr. Rudolf Feile, Darmstadt (B) (20, 22)
Stephan Fichtner, Dossenheim [SF] (A) (31)
Dr. Thomas Filk, Fribourg [TF3] (A) (10, 15)
Natalie Fischer, Dossenheim [NF] (A) (32)
Prof. Dr. Klaus Fredenhagen, Hambourg [KF2] (A) (Essai Algebraic Quantum Field Theory)
Thomas Fuhrmann, Heidelberg [TF1] (A) (14)
Christian Fulda, Heidelberg [CF] (A) (07)
Frank Gabler, Francfort [FG1] (A) (22 essais sur les systèmes de traitement de données pour les futures expériences sur les hautes énergies et les ions lourds)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Göttingen [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzbourg [MG1] (A, B) (01, 16 essai théorie fonctionnelle de la densité)
Prof. Dr. Hellmut Haberland, Fribourg [HH4] (A) (Essay Cluster Physics)
Dr. Andreas Heilmann, Chemnitz [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Jens Hoerner, Hanovre [JH] (A) (20)
Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Ulrich Kilian, Hambourg [Royaume-Uni] (A) (19)
Thomas Kluge, Mayence [TK] (A) (20)
Achim Knoll, Strasbourg [AK1] (A) (20)
Andreas Kohlmann, Heidelberg [AK2] (A) (29)
Dr. Barbara Kopff, Heidelberg [BK2] (A) (26)
Dr. Bernd Krause, Karlsruhe [BK1] (A) (19)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Dr. Andreas Markwitz, Dresde [AM1] (A) (21)
Holger Mathiszik, Bensheim [HM3] (A) (29)
Mathias Mertens, Mayence [MM1] (A) (15)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Warwick, Royaume-Uni [RM1] (A) (23)
Helmut Milde, Dresde [HM1] (A) (09 Essai Acoustique)
Guenter Milde, Dresde [GM1] (A) (12)
Maritha Milde, Dresde [MM2] (A) (12)
Dr. Christopher Monroe, Boulder, USA [CM] (A) (Essai Atom and Ion Traps)
Dr. Andreas Müller, Kiel [AM2] (A) (33 essai de physique au quotidien)
Dr. Nikolaus Nestlé, Ratisbonne [NN] (A) (05)
Dr. Thomas Otto, Genève [TO] (A) (06 Essai Mécanique analytique)
Prof. Dr. Harry Paul, Berlin [HP] (A) (13)
Cand. Phys. Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Prof. Dr. Ulrich Platt, Heidelberg [UP] (A) (Essai Atmosphère)
Dr. Oliver Probst, Monterrey, Mexique [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14 Essai Théorie Générale de la Relativité)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Prof. Dr. Günter Radons, Stuttgart [GR2] (A) (11)
Oliver Rattunde, Fribourg [OR2] (A) (16 essais sur la physique des clusters)
Dr. Karl-Henning Rehren, Göttingen [KHR] (A) (Essai Algebraic Quantum Field Theory)
Ingrid Reiser, Manhattan, États-Unis [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Prof. Dr. Hermann Rietschel, Karlsruhe [HR1] (A, B) (23)
Dr. Peter Oliver Roll, Mayence [OR1] (A, B) (04, 15 distributions d'essais)
Hans-Jörg Rutsch, Heidelberg [HJR] (A) (29)
Dr. Margit Sarstedt, Newcastle upon Tyne, Royaume-Uni [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Prof. Dr. Arthur Scharmann, Giessen (B) (06, 20)
Dr. Arne Schirrmacher, Munich [AS5] (A) (02)
Christina Schmitt, Fribourg [CS] (A) (16)
Cand. Phys. Jörg Schuler, Karlsruhe [JS1] (A) (06, 08)
Dr. Joachim Schüller, Mayence [JS2] (A) (10 dissertation mécanique analytique)
Prof. Dr. Heinz-Georg Schuster, Kiel [HGS] (A, B) (11 essai Chaos)
Richard Schwalbach, Mayence [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, Munich [KS] (A, B) (07, 20)
Cornelius Suchy, Bruxelles [CS2] (A) (20)
William J. Thompson, Chapel Hill, États-Unis [JMJ] (A) (Essay Computers in Physics)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Dipl.-Géophys. Rolf vom Stein, Cologne [RVS] (A) (29)
Patrick Voss-de Haan, Mayence [PVDH] (A) (17)
Thomas Wagner, Heidelberg [TW2] (A) (29 essai atmosphère)
Manfred Weber, Francfort [MW1] (A) (28)
Markus Wenke, Heidelberg [MW3] (A) (15)
Prof. Dr. David Wineland, Boulder, USA [DW] (A) (Essai Atom and Ion Traps)
Dr. Harald Wirth, Saint Genis-Pouilly, F [HW1] (A) (20) Steffen Wolf, Fribourg [SW] (A) (16)
Dr. Michael Zillgitt, Francfort [MZ] (A) (02)
Prof. Dr. Helmut Zimmermann, Iéna [HZ] (A) (32)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)

Dr. Ulrich Kilian (responsable)
Christine Weber

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

L'abréviation de l'auteur est entre crochets, le nombre entre parenthèses est le numéro du domaine, une liste des domaines se trouve dans l'avant-propos.

Markus Aspelmeyer, Munich [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Francfort [HB1] (A, B) (29)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Ulf Borgeest, Hambourg [UB2] (A) (Essay Quasars)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Karl Eberl, Stuttgart [KE] (A) (essai d'épitaxie par faisceau moléculaire)
Dr. Dietrich Einzel, Garching [DE] (A) (20)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Vienne [FE] (A) (27)
Dr. Roger Erb, Kassel [RE1] (A) (33 essai Phénomènes optiques dans l'atmosphère)
Dr. Christian Eurich, Brême [CE] (A) (Réseaux de neurones d'essai)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Fribourg [TF3] (A) (10, 15 essai théorie de la percolation)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Harald Fuchs, Münster [HF] (A) (Essay Scanning Probe Microscopy)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hanovre [CF] (A) (07)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Prof. Dr. Gerd Graßhoff, Berne [GG] (A) (02)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzbourg [MG1] (B) (01, 16)
Gunther Hadwich, München [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Christoph Heinze, Hamburg [CH3] (A) (29)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Florian Herold, München [FH] (A) (20)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Georg Hoffmann, Gif-sur-Yvette, FR [GH1] (A) (29)
Dr. Gert Jacobi, Hamburg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Catherine Journet, Stuttgart [CJ] (A) (Essay Nanoröhrchen)
Prof. Dr. Josef Kallrath, Ludwigshafen, [JK] (A) (04 Essay Numerische Methoden in der Physik)
Priv.-Doz. Dr. Claus Kiefer, Freiburg [CK] (A) (14, 15 Essay Quantengravitation)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [UK] (A) (19)
Dr. Uwe Klemradt, München [UK1] (A) (20, Essay Phasenübergänge und kritische Phänomene)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, USA [AK3] (A) (02)
Dr. Berndt Koslowski, Ulm [BK] (A) (Essay Ober- und Grenzflächenphysik)
Dr. Bernd Krause, München [BK1] (A) (19)
Dr. Jens Kreisel, Grenoble [JK2] (A) (20)
Dr. Gero Kube, Mainz [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdeburg [VL] (A) (04)
Priv.-Doz. Dr. Axel Lorke, München [AL] (A) (20)
Dr. Andreas Markwitz, Lower Hutt, NZ [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Prof. Dr. Karl von Meyenn, München [KVM] (A) (02)
Dr. Rudi Michalak, Augsburg [RM1] (A) (23)
Helmut Milde, Dresden [HM1] (A) (09)
Günter Milde, Dresden [GM1] (A) (12)
Marita Milde, Dresden [MM2] (A) (12)
Dr. Andreas Müller, Kiel [AM2] (A) (33)
Dr. Nikolaus Nestle, Leipzig [NN] (A, B) (05, 20 Essays Molekularstrahlepitaxie, Ober- und Grenzflächenphysik und Rastersondenmikroskopie)
Dr. Thomas Otto, Genf [TO] (A) (06)
Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, München [RAP] (A) (14)
Dr. Andrea Quintel, Stuttgart [AQ] (A) (Essay Nanoröhrchen)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15 Essay Quanteninformatik)
Robert Raussendorf, München [RR1] (A) (19)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15 Essay Quantenmechanik und ihre Interpretationen)
Prof. Dr. Siegmar Roth, Stuttgart [SR] (A) (Essay Nanoröhrchen)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Dr. Margit Sarstedt, Leuven, B [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Michael Schmid, Stuttgart [MS5] (A) (Essay Nanoröhrchen)
Dr. Martin Schön, Konstanz [MS] (A) (14)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Paul Steinhardt, Princeton, USA [PS] (A) (Essay Quasikristalle und Quasi-Elementarzellen)
Prof. Dr. Klaus Stierstadt, München [KS] (B)
Dr. Siegmund Stintzing, München [SS1] (A) (22)
Cornelius Suchy, Brüssel [CS2] (A) (20)
Dr. Volker Theileis, München [VT] (A) (20)
Prof. Dr. Gerald 't Hooft, Utrecht, NL [GT2] (A) (Essay Renormierung)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Köln [TV] (A) (20)
Rolf vom Stein, Köln [RVS] (A) (29)
Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Dr. Hildegard Wasmuth-Fries, Ludwigshafen [HWF] (A) (26)
Manfred Weber, Frankfurt [MW1] (A) (28)
Priv.-Doz. Dr. Burghard Weiss, Lübeck [BW2] (A) (02)
Prof. Dr. Klaus Winter, Berlin [KW] (A) (Essay Neutrinophysik)
Dr. Achim Wixforth, München [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, USA [SW] (A) (16)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23 Essay Organische Supraleiter)
Priv.-Doz. Dr. Jörg Zegenhagen, Stuttgart [JZ3] (A) (21 Essay Oberflächenrekonstruktionen)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, München [WZ] (A) (20)

Dr. Ulrich Kilian (verantwortlich)
Christine Weber

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

In eckigen Klammern steht das Autorenkürzel, die Zahl in der runden Klammer ist die Fachgebietsnummer eine Liste der Fachgebiete findet sich im Vorwort.

Prof. Dr. Klaus Andres, Garching [KA] (A) (10)
Markus Aspelmeyer, München [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Dr. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Frankfurt [HB1] (A, B) (29 Essay Seismologie)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Prof. Dr. Martin Dressel, Stuttgart (A) (Essay Spindichtewellen)
Dr. Michael Eckert, München [ME] (A) (02)
Dr. Dietrich Einzel, Garching (A) (Essay Supraleitung und Suprafluidität)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Wien [FE] (A) (27)
Dr. Roger Erb, Kassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmern [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Freiburg [TF3] (A) (10, 15)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hannover [CF] (A) (07)
Frank Gabler, Frankfurt [FG1] (A) (22)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Prof. Dr. Henning Genz, Karlsruhe [HG2] (A) (Essays Symmetrie und Vakuum)
Dr. Michael Gerding, Potsdam [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Gunther Hadwich, München [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Dr. Sascha Hilgenfeldt, Cambridge, USA (A) (Essay Sonolumineszenz)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Gert Jacobi, Hamburg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Prof. Dr. Josef Kallrath, Ludwigshafen [JK] (A) (04)
Priv.-Doz. Dr. Claus Kiefer, Freiburg [CK] (A) (14, 15)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [UK] (A) (19)
Thomas Kluge, Jülich [TK] (A) (20)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, USA [AK3] (A) (02)
Dr. Bernd Krause, München [BK1] (A) (19)
Dr. Gero Kube, Mainz [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdeburg [VL] (A) (04)
Dr. Anton Lerf, Garching [AL1] (A) (23)
Dr. Detlef Lohse, Twente, NL (A) (Essay Sonolumineszenz)
Priv.-Doz. Dr. Axel Lorke, München [AL] (A) (20)
Prof. Dr. Jan Louis, Halle (A) (Essay Stringtheorie)
Dr. Andreas Markwitz, Lower Hutt, NZ [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Dresden [RM1] (A) (23 Essay Tieftemperaturphysik)
Günter Milde, Dresden [GM1] (A) (12)
Helmut Milde, Dresden [HM1] (A) (09)
Marita Milde, Dresden [MM2] (A) (12)
Prof. Dr. Andreas Müller, Trier [AM2] (A) (33)
Prof. Dr. Karl Otto Münnich, Heidelberg (A) (Essay Umweltphysik)
Dr. Nikolaus Nestle, Leipzig [NN] (A, B) (05, 20)
Dr. Thomas Otto, Genf [TO] (A) (06)
Priv.-Doz. Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexico [OP] (A) (30)
Dr. Roland Andreas Puntigam, München [RAP] (A) (14)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15)
Robert Raussendorf, München [RR1] (A) (19)
Ingrid Reiser, Manhattan, USA [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Prof. Dr. Erhard Scholz, Wuppertal [ES] (A) (02)
Dr. Martin Schön, Konstanz [MS] (A) (14 Essay Spezielle Relativitätstheorie)
Dr. Erwin Schuberth, Garching [ES4] (A) (23)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mainz [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, München [KS] (B)
Dr. Siegmund Stintzing, München [SS1] (A) (22)
Dr. Berthold Suchan, Gießen [BS] (A) (Essay Wissenschaftsphilosophie)
Cornelius Suchy, Brüssel [CS2] (A) (20)
Dr. Volker Theileis, München [VT] (A) (20)
Prof. Dr. Stefan Theisen, München (A) (Essay Stringtheorie)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Köln [TV] (A) (20)
Rolf vom Stein, Köln [RVS] (A) (29)
Dr. Patrick Voss-de Haan, Mainz [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Manfred Weber, Frankfurt [MW1] (A) (28)
Dr. Martin Werner, Hamburg [MW] (A) (29)
Dr. Achim Wixforth, München [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, USA [SW] (A) (16)
Dr. Stefan L. Wolff, München [SW1] (A) (02)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, München [WZ] (A) (20)

Artikel zum Thema

Laden.

Verschiedene Beispiele physikalischer Phänomene Die Physik ist eine Naturwissenschaft, die grundlegende Phänomene der Natur untersucht.

Wasserkraftwerke nutzen die potentielle Energie eines Stausees. Je größer die gespeicherte Wassermenge und je größer der Höhenunterschied der Staustufe, desto mehr elektrische Energie kann das Kraftwerk liefern. Die potentielle Energie (auch potenzielle oder Lageenergie genannt) beschreibt die Energie eines physikalischen Systems, die durch seine Lage in einem Kraftfeld oder durch seine aktuelle System-Konfigurationz. B.


Kaufmann-Bucherer-Neumann-Experimente

Ladung-Masse-Verhältnisses und somit zur Abhängigkeit der Masse bzw. des Impulses von Betastrahlung von ihrer Geschwindigkeit. Eine Radiumquelle emittiert Licht durch einen evakuierten Apparat. Parallele magnetische und elektrische Felder lenken die Elektronen ab, bis sie eine photographischen Platte erreichen. a) Frontansicht b) Seitenansicht c) Elektronenkurven Die Kaufmann-Bucherer-Neumann-Experimente (1901&ndash1915) überprüften die Abhängigkeit der trägen Masse (oder des Impulses) von Elektronen von ihrer Geschwindigkeit.


Technische Daten

  • Schulröntgeneinrichtung und Vollschutzgerät mit Bauartzulassung BfS 05/07 V/Sch RöV, verlängert und ergänzt nach RöV (2017), (erlaubt den Betrieb mit den Wechselröhren Fe, Cu, Mo, Ag, W, Au)
  • Dosisleistung in 10 cm Abstand: < 1 µSv/h (erfüllt die Grenzwerte der Dosisleistung der aktuellen RöV)
  • Je zwei unabhängige und überwachte Sicherheitskreise für Türen, Hochspannung und Röhrenstrom (TÜV Rheinland geprüft)
  • Automatische Türverriegelung: Öffnen erst möglich, wenn keine Röntgenstrahlung mehr erzeugt wird (TÜV Rheinland geprüft)
  • Röhren-Hochspannung: 0 . 35,0 kV (geregelte Gleichspannung)
  • Röhrenstrom: 0 . 1,00 mA (unabhängig geregelter Gleichstrom)
  • Sichtbare Röntgenröhre mit Molybdän-Anode für kurzwellige charakteristische Strahlung:
    K α = 17,4 keV (71,0 pm), K β = 19,6 keV (63,1 pm)
  • Leuchtschirm für Durchstrahlungsexperimente: d = 15 cm
  • Eingebautes Ratemeter inklusive Spannungsversorgung für GM-Zählrohr
  • Lautsprecher: einschaltbar zur akustischen Verfolgung der Zählrate
  • Zwei 4-stellige Displays (Höhe 25 mm) zur wahlweisen Anzeige der aktuellen Werte von Hochspannung, Anodenstrom, Zählrate, Target- / Sensorwinkel, Scanbereich, Schrittweite, Torzeit
  • Goniometer (554 831) schrittmotorgesteuert
    Betriebsarten: manuelle Einstellung und automatischer Scan für Sensor alleine, Target alleine, 2:1-Kopplung
    Winkelbereich: Target unbegrenzt (0° . 360°), Sensor -10° . +170° Winkelauflösung: 0,1° Winkelauflösung: 0,01° mit HD-Zusatz X-ray (554 835), Gebrauchsmuster geschützt
  • Belichtungsuhr: Torzeit: 0,5 s . 9999 s
  • Durchführungen in den Experimentierraum: Hochspannungs-Koaxial-Kabel, BNC-Koaxialkabel, Leerkanal, z. B. für Schläuche, Kabel, etc.
  • Analogausgänge: jeweils proportional zum Targetwinkel und zur Zählrate für Schreiberanschluss
  • USB-Port für Anschluss des PC zur Datenaufnahme, Steuerung und Auswertung des Experimentes z.B. mit der mitgelieferten Windows-Software
  • LabVIEW- und MATLAB-Treiber für Windows kostenlos unter http://www.ld-didactic.com für eigene Messungen und Steuerungen
  • Eingangsspannung: 230 V ± 10% / 47 . 63 Hz
  • Elektrische Trennung: Sicherheitstransformator nach DIN EN 61558-2-6
  • Leistungsaufnahme: 120 VA
  • Abmessungen: 67 cm x 48 cm x 35 cm
  • Masse: 41 kg

Isotopen-Effekte

Außerdem gibt es noch die Isotopen-Effekte. Anders als der Kernspin liefern diese keine Niveau-Aufspaltung innerhalb eines einzelnen Atoms. Vielmehr liegt eine Verschiebung der Spektrallinien für verschiedene Isotope desselben Elements vor, die so genannte Isotopieverschiebung. Dadurch ist bei einem Isotopengemisch eine Aufspaltung der Linien zu beobachten.

Kernmassen-Effekt

Der Kernmasseneffekt beruht auf der Mitbewegung des Atomkerns. Diese äußert sich in einer geringeren effektiven Masse des Elektrons. Da die Kerne verschiedener Isotope unterschiedliche Masse haben, ist die effektive Masse ihrer Elektronen ebenfalls leicht unterschiedlich, was sich in einer entsprechenden Verschiebung aller Zustände in Richtung höherer Energie äußert. Da die Kernmitbewegung mit steigender Masse des Kerns abnimmt, spielt dieser Effekt vor allem für leichte Atomkerne eine Rolle.

Kernvolumen-Effekt

Der Kernvolumen-Effekt beruht auf der endlichen Ausdehnung des Atomkerns. Elektronen in s-Zuständen (also mit Bahndrehimpulsـ) haben eine nicht vernachlässigbare Aufenthaltswahrscheinlichkeit im Kern, wo das Potential nicht mehr die reine Coulomb-Form hat. Diese Abweichung bedeutet eine Anhebung der Energien der Zustände, die vom Volumen des Kerns abhängt. Absolut gesehen ist dieser Effekt bei schweren Atomen am größten, da diese die größten Atomkerne haben. Die Aufspaltung ist jedoch wiederum bei den kleineren Atomkernen größer, da hier die Verhältnisse der Kernvolumina verschiedener Isotope größer sind.


Journal für Chemie und Physik

Abstract

- aqo - ?ling , ba[f oon jebtr in jrbrtn %oilate riii 4cft ron 11. bi4 -6 9up eri4eint. Tnnirn bor %b tlicilungen. 9 r ei fr. I. Sciences mathematiques , physiques et Zrnnr. chimiques Iz IJ a Sciences natiirellee et gdologie &ldquo9 3. Sciences mcdicales 2 !I 4. Sciences agricolps iconomiqueo 2 0 J. Sciences technolo,&lsquo nlvues , &rdquo4 ti. Scieiices geographiques etc. &ldquo4 7. Sciericcs hisroriques , antiqnitds pliilologie 20 s Scirnces militaircs &lsquo5 Se 3 e 6 t b 1 i In ti4 11 at i b re 6 o fo n b er en Jt: it pim i ta r G c is ttr wnrer Ern jobIrei4en Ocfcljrten uon Ymri6 wnb it)rc:: bcfolibcreir $oiiptretncteour. %IIe

riften, bie bie CJn.cite bed 9illlctiii6 brrlii)icn, morbcn ilit %

nllQ gqcn oerma n bte B) tbri lung cn bc

clben aihg (110 ltimell 1111 b nlle Bc[ct)rte, wchfy illre 2WFe in bmjzibcn ttlI$EjCiyt iuiliir fc$en, tingelabtn, felbige (portcfrct) ber 9ircPticn brd 23SiilIetin14 eitijnrriiben. man wirb lei& bqreifcn, ang bie ?ftiefiibruitg eined fo grofien Unterne

inend niir an ti, nem Zrte, IUD tiit foldjot

nfnin:xenflug uon @olcbrten, Die il VariS, wnb iiiitcr ber ftitung eincd fo gtiffreifien unb oitlfcitig gebilbeton SmnnUtB, Wie


Inhaltsverzeichnis

Die Spin-Bahn-Wechselwirkung wurde bei den Elektronen in der Atomhülle zuerst beobachtet. Hier bewirkt sie eine Aufspaltung der Spektrallinien und trägt damit (neben relativistischen Effekten und dem Darwin-Term) zur Feinstruktur der Atomspektren bei. Ein bekannter Fall ist die Aufspaltung der gelben D-Linie von Natrium, die sich bereits mit einem guten Prisma beobachten lässt.

Wesentlich stärker ist die Spin-Bahn-Wechselwirkung für die Protonen und Neutronen im Atomkern (siehe Schalenmodell (Kernphysik)).

Halbklassische Deutung für ein Elektron Bearbeiten

Nimmt man Eigendrehimpuls (Spin) und magnetisches Moment des Elektrons als vorgegeben, lässt sich die Spin-Bahn-Kopplung anschaulich schon im Bohrschen Atommodell begründen: Aus der Maxwelltheorie und der speziellen Relativitätstheorie folgt, dass auf ein Elektron, wenn es im elektrischen Feld eines Atomkerns kreist, ein magnetisches Feld wirkt. Im Ruhesystem des Elektrons wird nämlich eine kreisende Bewegung des Kerns wahrgenommen. Diese Bewegung stellt aufgrund der Ladung des Kerns einen Kreisstrom dar, welcher nach dem Gesetz von Biot-Savart ein Magnetfeld parallel zum Bahndrehimpulsvektor erzeugt. Das durch den Kreisstrom verursachte Magnetfeld entspricht in dieser klassischen Ansichtsweise dem magnetischen Moment des Bahndrehimpulses. Hinzu kommt der Spin des Elektrons (intrinsische Größe), welcher ebenfalls ein magnetisches Moment hervorruft. Diese magnetischen Momente können nun miteinander wechselwirken. Man stelle sich einen Stabmagneten, welcher den Spin repräsentiert, in dem Feld einer Spule vor, welches das Feld durch die Kreisbewegung darstellt. Es gibt nun eine energetisch günstige Ausrichtung, in der das Feld des Stabmagneten parallel zum Feld der Spule liegt, und eine ungünstige, in der das Feld des Stabmagneten antiparallel zum Feld der Spule liegt. Da das magnetische Moment des Elektrons zu seinem Spin antiparallel ist, ergibt sich für eine Spinrichtung parallel zum Feld eine höhere Energie und für die entgegengesetzte eine niedrigere. Da für einen Spin 1/2 nur diese zwei Einstellmöglichkeiten existieren, wird ein einzelnes Energieniveau in zwei Niveaus aufgespalten, und es gibt in den optischen Spektren zwei gegenüber der ursprünglichen Lage leicht verschobene Linien, die bei grober Betrachtung aber als eine erscheinen.

In der nichtrelativistischen Quantenmechanik wird für jedes Elektron ein entsprechender Summand in der Schrödingergleichung hinzugefügt, in der relativistischen Quantenmechanik ergeben sich Spin, magnetisches Moment und Spin-Bahn-Wechselwirkung automatisch aus der Diracgleichung.

Spin-Bahn-Kopplungsenergie für ein Elektron Bearbeiten

Der Hamiltonoperator für die Spin-Bahn-Wechselwirkung eines Elektrons im elektrostatischen Zentralfeld lautet [1]

Der Abstand zwischen den aufgespaltenen Niveaus zu j = ℓ ± 1 2 <2>>> beträgt Δ E = a 2 ( 2 ℓ + 1 ) (2ell +1)> (siehe auch Landésche Intervallregel). Er tritt z. B. bei der Röntgenphotoelektronenspektroskopie (XPS), bei der Absorption von Röntgenstrahlung und der Emission von charakteristischer Röntgenstrahlung experimentell in Erscheinung, weil diese Prozesse direkt von der Bindungsenergie einzelner Elektronen in inneren Schalen des Atoms abhängen.


Video: spectres atomiques (Juin 2022).


Commentaires:

  1. Vusar

    Wow :) comme c'est génial!

  2. Allred

    Bien sûr, je m'excuse, mais, à mon avis, il existe un autre moyen de résoudre le problème.

  3. Ohanzee

    Tu te trompes. Ecrivez moi en MP, on discutera.

  4. Wolfric

    Je vous suggère d'aller sur un site qui a beaucoup d'informations sur ce sujet.



Écrire un message