Chimie

Le concept du champ électrique

Le concept du champ électrique


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Champ électrique

Si une particule de masse chargée en mouvement libre, par exemple une molécule de gaz ionisé, est amenée à proximité d'autres charges stationnaires, la particule subit des forces de répulsion du même nom et des forces d'attraction de charges opposées. De plus, le système a une certaine énergie potentielle, selon l'endroit où se trouve la molécule de gaz. Les forces, énergies et tensions électriques qui y jouent un rôle font l'objet de ce chapitre.

De la situation ci-dessus, vous pouvez déjà voir que la description des faits physiques est assez longue et compliquée. D'une part, l'état du système dépend de la taille et de la répartition des charges fixes, d'autre part également de la taille et de la position (éventuellement temporelles) de la charge mobile.

Pour cette raison, un nouveau terme est introduit : le champ électrique. Le champ électrique existe à chaque endroit de la pièce et pas seulement là où se trouve la particule en mouvement (molécule de gaz). L'intensité de champ physique variable associée au champ est également définie de manière à être indépendante de l'emplacement et de la charge de la particule échantillon (molécule de gaz).

Notre objectif est d'utiliser la connaissance de la force et de la direction du champ électrique en tout point de l'espace pour calculer la force sur un corps chargé qui se trouve à ce point.


Général

Différentes compréhensions du concept de champ

D'une part, les champs indiquent la distribution spatiale de certaines propriétés physiques : Par exemple, la distribution spatiale de la température d'une cuisinière peut être décrite par un champ de température ou la distribution spatiale de la densité dans un corps peut être décrite par un champ de densité de masse. En ce sens, un champ est une aide mathématique qui montre les propriétés physiques d'un système étendu ou d'un système composé de sous-systèmes dans une taille qui est en fait définie point par point. le champ, résume.

Cependant, un champ peut également être une entité physique indépendante qui ne doit pas être considérée comme un système composite ou une variable auxiliaire mathématique. Tout comme une particule, un corps rigide ou un autre système physique, le champ peut alors transporter du moment et du moment angulaire, contenir de l'énergie et être dans des états excités. & # 911 & # 93 Par exemple, un rayon de lumière qui transporte de l'énergie à travers l'espace vide, tel que décrit par le vecteur de Poynting, est un champ (dépendant du temps) et est au même niveau que les particules ou toute autre matière dans la hiérarchie physique d'entités. & # 912 & # 93

En ce sens, & # 160B. le champ électrique $vec( vec, t) $ peut d'une part être simplement considéré comme une distribution spatiale de l'intensité du champ électrique, ou d'autre part comme un système indépendant et irréductible.

Dynamique des champs

En général, les champs sont dépendants du temps, c'est-à-dire des fonctions de lieu et de temps. La dynamique d'une particule est décrite au moyen d'équations de mouvement, de manière correspondante la dynamique des champs, c'est-à-dire le changement spatio-temporel de la taille du champ, est décrite au moyen d'équations de champ. La différence essentielle entre les équations de champ et les équations de mouvement des particules est qu'une équation de champ décrit la dynamique d'un nombre infini de degrés de liberté, puisqu'un champ a un nombre infini de degrés de liberté (la taille du champ en chaque point dans l'espace forme un degré de liberté et un champ sont généralement définis en un nombre infini de points de l'espace) . Les équations du mouvement d'une particule, en revanche, ne décrivent que la dynamique d'un nombre fini de degrés de liberté (principalement le développement des trois coordonnées spatiales de la particule au cours du temps).


Exemples

Le courant électrique (plus précisément : le courant électrique Intensité de courant En théorie des champs aussi Flux de courant appelé) de la cargaison Q pendant une certaine unité de temps t , est aussi un flux, à savoir le flux de la densité de courant (Densité de flux de courant) par une surface normale à la direction de la rivière :

L'exemple ci-dessus illustre la relation entre les termes physiques (abstraits) couler ou conceptuellement identique courant et les densités de flux associées, qui sont également utilisées dans d'autres domaines de la physique (par exemple, le courant de probabilité en mécanique quantique).

Une autre application (parmi tant d'autres) est par exemple le flux magnétique & Phi ou le flux électrique & Psi qui peut s'écrire sous la forme suivante dans le cas statique :

par lequel désigne la densité de flux électrique. Q est la charge électrique qui provoque le flux électrique en tant que source et puits.


Champ électrique d'une charge de ligne

Le champ électrique d'une charge de ligne (un fil chargé infiniment long) avec la densité de charge linéaire $ lambda = dfrac $ est donné par

Le vecteur de base est $ vec $ dirigé radialement de la charge de ligne au point de référence.

Champ électrique d'une charge de surface

Une charge de surface (une plaque mince uniformément chargée, infiniment étendue) crée un champ électrique homogène des deux côtés. Le vecteur d'intensité de champ est perpendiculaire à la plaque en tout point et éloigné de la plaque dans le cas d'une charge positive et vers la plaque dans le cas d'une charge négative. Si on fixe la densité de charge surfacique $sigma = dfrac $ en avant, l'intensité du champ électrique a le montant

Champ électrique homogène (condensateur à plaques)

Le champ électrique entre deux grandes plaques de condensateur plan-parallèles qui contiennent des charges de même quantité mais de signes différents est approximativement homogène (strictement homogène si les plaques sont infiniment grandes). Ce qui suit s'applique à l'amplitude de l'intensité du champ :

$ D $ est la distance entre les plaques, $ A $ la surface d'une plaque de condensateur, $ U $ la tension entre les deux plaques et $ Q $ la quantité de charge sur une plaque. Le potentiel change linéairement d'une plaque à l'autre du montant $ U $. Si les plaques sont écartées, l'intensité du champ reste constante et la tension augmente. Le travail effectué contre l'attraction électrostatique est dans l'énergie du champ. En dehors du condensateur, l'intensité du champ (idéalement) est égale à 0.

Les charges sur les plaques du condensateur sont uniformément réparties sur les surfaces des plaques en regard. Les quantités absolues de densité de charge de surface

et la densité de flux électrique $ vec $ match. Cependant, $ sigma $ est une quantité scalaire, $ vec $, par contre, est un vecteur.

Si le condensateur n'est pas connecté à une source de charge externe, la valeur de la densité de charge de surface $ sigma $ ne change pas si un diélectrique est inséré ou retiré entre les plaques du condensateur. L'intensité du champ électrique $ E $ change du facteur $ 1 / varepsilon_r $ lorsqu'elle est ajoutée et de $ varepsilon_r $ lorsqu'elle est supprimée.

Champ électrique d'un dipôle

Un dipôle électrique, c'est-à-dire un arrangement de deux charges ponctuelles $ + Q $ et $ -Q $ à une distance de $ d $, crée un champ à symétrie de rotation. Pour les composantes d'intensité de champ parallèles et perpendiculaires à l'axe du dipôle, $ r $ s'applique dans la direction à grande distance ??:

Ça montre = 0 du centre vers la charge positive.

Exactement la formule s'applique au franchissement limite pour la disparition de $ d $ avec une amplitude constante du moment dipolaire $ Qd $.


Les champs électriques qui ne changent pas avec le temps sont appelés champs électrostatiques. Chaque charge statique est toujours entourée d'un champ électrostatique. Les propriétés géométriques d'un champ électrique sont toujours déterminées par la forme de la surface du corps sur lequel se trouvent les charges génératrices de champ. Les charges ponctuelles ou les corps sphériques ont des champs radialement symétriques. Dans un condensateur à plaques, il existe un champ homogène qui a les mêmes propriétés à tous les emplacements du condensateur.

Champ d'un condensateur à plaques : Un champ homogène existe entre les plaques, c'est-à-dire un champ dont l'intensité est la même partout.


Champ électrique

champ électrique, l'état électrique de l'espace (vide ou rempli de matière). Le champ électrique est généré au repos (champ électrostatique) ou généré des charges électriques en mouvement (champ électromagnétique). Le champ électrique est déterminé par le vecteur de l'intensité du champ électrique E. décrit avec l'unité V/m. E.(X) peut être représenté par les lignes de champ électrique, son contenu énergétique est appelé énergie de champ électrique.

Le champ électrique au loin r à partir d'un point de charge Q est E. = Qr / (4πε0r 3). Le champ de plusieurs charges résulte de l'addition des champs individuels (principe de superposition). Pour une répartition des charges ρ est applicable: ε0 div E. = ρ (Théorème de Gau & # 223, équations de Maxwell). Dans la matière non conductrice (diélectrique), le champ électrique est modifié par la polarisation électrique, d'où le décalage diélectrique RÉ. = εE. introduit (ε: constante diélectrique), pour les divers dans le vide et la matièreRÉ. = ρ est applicable. A l'intérieur d'un conducteur, le champ électrique disparaît, car chaque Différence de potentiel Les supports de charge librement mobiles seraient à nouveau équilibrés immédiatement.

Le champ électrostatique est sans remous (RougeE. = 0), il peut donc être représenté comme un gradient d'un champ scalaire, le potentiel de Coulomb φ: E. = – φ. Dans le cas dynamique, le rouge s'appliqueE. = -dB. / rét et E. = – φ & # 8211 dUNE. /dt (étalonnage de Lorentz, B.: densité de flux magnétique, UNE.: potentiel vecteur). Dans la formulation relativiste ou covariante de l'électrodynamique, le champ électrique et le champ magnétique fusionnent pour former le tenseur d'intensité de champ. En électrodynamique quantique (QED), le champ électrique (continu) est interprété comme la limite macroscopique de l'échange de quanta de champ virtuel discret, les photons.

Une charge électrique Q subit une force dans le champ électrique statique F. = QE., la dite. Force coulombienne, généralement la force de Lorentz F. = Q(E. + v × B.) ( v: Vitesse de la charge, en partie avec la force de Lorentz aussi seulement ça force magnétique Q v × B. censé). Le champ électrique peut être mesuré via cet effet de force, une autre possibilité est par exemple le creux électrolytique. UNE champ électrique avec des lignes de champ parallèles comme par exemple dans le condensateur à plaques est appelé homogène. Il y a un dipôle électrique p un couple M. = p × E. Dans le champ inhomogène, une force résultante supplémentaire agit sur le dipôle F. = (p · )E..

Le concept de champ électrique (et magnétique) a été introduit en 1831 par M. Faraday. Elle remplace l'ancienne conception de l'action momentanée des forces électriques à distance (théorie de l'action à distance). Le champ est donc un état de tension dans l'espace lui-même, qui est provoqué par les charges et qui se propage à une vitesse finie (théorie des effets de proximité). L'hypothèse selon laquelle il existe, comme le son, son propre milieu remplissant l'espace (& # 196ther) a été réfutée par l'expérience de Michelson-Morley et est devenue obsolète depuis la théorie de la relativité restreinte d'A. Einstein.

Avis des lecteurs

Si vous avez des commentaires sur le contenu de cet article, vous pouvez en informer la rédaction par e-mail. Nous avons lu votre lettre, mais nous vous demandons de comprendre que nous ne pouvons pas répondre à tout le monde.

Personnel Volume I et II

Silvia Barnert
Dr. Matthias Delbrück
Dr. Glace Reinald
Nathalie Fischer
Walter Greulich (éditeur)
Carsten Heinisch
Sonja Nagel
Dr. Gunnar Radons
MS (optique) Lynn Schilling-Benz
Dr. Joachim Schüller

Christine Weber
Ulrich Kilian

L'abréviation de l'auteur est entre crochets, le nombre entre parenthèses est le numéro du domaine, une liste des domaines se trouve dans l'avant-propos.

Katja Bammel, Berlin [KB2] (A) (13)
Prof. Dr. W. Bauhofer, Hambourg (B) (20, 22)
Sabine Baumann, Heidelberg [SB] (A) (26)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Francfort [HB1] (A, B) (29)
Prof. Dr. Klaus Bethge, Francfort (B) (18)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Angela Burchard, Genève [AB] (A) (20, 22)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Heidelberg [FE] (A) (27 Essai Biophysique)
Dr. Roger Erb, Cassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Dr. Andreas Faulstich, Oberkochen [AF4] (A) (Essai sur l'optique adaptative)
Prof. Dr. Rudolf Feile, Darmstadt (B) (20, 22)
Stephan Fichtner, Dossenheim [SF] (A) (31)
Dr. Thomas Filk, Fribourg [TF3] (A) (10, 15)
Natalie Fischer, Dossenheim [NF] (A) (32)
Prof. Dr. Klaus Fredenhagen, Hambourg [KF2] (A) (Essai sur la théorie des champs quantiques algébriques)
Thomas Fuhrmann, Heidelberg [TF1] (A) (14)
Christian Fulda, Heidelberg [CF] (A) (07)
Frank Gabler, Frankfurt [FG1] (A) (22 essais sur les systèmes de traitement de données pour les futures expériences sur les hautes énergies et les ions lourds)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Göttingen [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzbourg [MG1] (A, B) (01, 16 essai théorie fonctionnelle de la densité)
Prof. Dr. Hellmut Haberland, Fribourg [HH4] (A) (Essay Cluster Physics)
Dr. Andreas Heilmann, Chemnitz [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Jens Hoerner, Hanovre [JH] (A) (20)
Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Ulrich Kilian, Hambourg [Royaume-Uni] (A) (19)
Thomas Kluge, Mayence [TK] (A) (20)
Achim Knoll, Strasbourg [AK1] (A) (20)
Andreas Kohlmann, Heidelberg [AK2] (A) (29)
Dr. Barbara Kopff, Heidelberg [BK2] (A) (26)
Dr. Bernd Krause, Karlsruhe [BK1] (A) (19)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Dr. Andreas Markwitz, Dresde [AM1] (A) (21)
Holger Mathiszik, Bensheim [HM3] (A) (29)
Mathias Mertens, Mayence [MM1] (A) (15)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Warwick, Royaume-Uni [RM1] (A) (23)
Helmut Milde, Dresde [HM1] (A) (09 Essai Acoustique)
Guenter Milde, Dresde [GM1] (A) (12)
Maritha Milde, Dresde [MM2] (A) (12)
Dr. Christopher Monroe, Boulder, USA [CM] (A) (Essai Atom and Ion Traps)
Dr. Andreas Müller, Kiel [AM2] (A) (33 essai de physique au quotidien)
Dr. Nikolaus Nestlé, Ratisbonne [NN] (A) (05)
Dr. Thomas Otto, Genève [TO] (A) (06 Essai Mécanique analytique)
Prof. Dr. Harry Paul, Berlin [HP] (A) (13)
Cand. Phys. Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Prof. Dr. Ulrich Platt, Heidelberg [UP] (A) (Essai Atmosphère)
Dr. Oliver Probst, Monterrey, Mexique [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14 Essai Théorie Générale de la Relativité)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Prof. Dr. Günter Radons, Stuttgart [GR2] (A) (11)
Oliver Rattunde, Fribourg [OR2] (A) (16 essais sur la physique des clusters)
Dr. Karl-Henning Rehren, Göttingen [KHR] (A) (Essai Algebraic Quantum Field Theory)
Ingrid Reiser, Manhattan, États-Unis [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Prof. Dr. Hermann Rietschel, Karlsruhe [HR1] (A, B) (23)
Dr. Peter Oliver Roll, Mayence [OR1] (A, B) (04, 15 distributions d'essais)
Hans-Jörg Rutsch, Heidelberg [HJR] (A) (29)
Dr. Margit Sarstedt, Newcastle upon Tyne, Royaume-Uni [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Prof. Dr. Arthur Scharmann, Giessen (B) (06, 20)
Dr. Arne Schirrmacher, Munich [AS5] (A) (02)
Christina Schmitt, Fribourg [CS] (A) (16)
Cand. Phys. Jörg Schuler, Karlsruhe [JS1] (A) (06, 08)
Dr. Joachim Schüller, Mayence [JS2] (A) (10 dissertation mécanique analytique)
Prof. Dr. Heinz-Georg Schuster, Kiel [HGS] (A, B) (11 essai Chaos)
Richard Schwalbach, Mayence [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, Munich [KS] (A, B) (07, 20)
Cornelius Suchy, Bruxelles [CS2] (A) (20)
William J. Thompson, Chapel Hill, États-Unis [JMJ] (A) (Essay Computers in Physics)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Dipl.-Géophys. Rolf vom Stein, Cologne [RVS] (A) (29)
Patrick Voss-de Haan, Mayence [PVDH] (A) (17)
Thomas Wagner, Heidelberg [TW2] (A) (29 essai atmosphère)
Manfred Weber, Francfort [MW1] (A) (28)
Markus Wenke, Heidelberg [MW3] (A) (15)
Prof. Dr. David Wineland, Boulder, États-Unis [DW] (A) (Essai Atom and Ion Traps)
Dr. Harald Wirth, Saint Genis-Pouilly, F [HW1] (A) (20) Steffen Wolf, Fribourg [SW] (A) (16)
Dr. Michael Zillgitt, Francfort [MZ] (A) (02)
Prof. Dr. Helmut Zimmermann, Iéna [HZ] (A) (32)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)

Dr. Ulrich Kilian (responsable)
Christine Weber

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

L'abréviation de l'auteur est entre crochets, le nombre entre parenthèses est le numéro du domaine, une liste des domaines se trouve dans l'avant-propos.

Markus Aspelmeyer, Munich [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Francfort [HB1] (A, B) (29)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Ulf Borgeest, Hambourg [UB2] (A) (Essay Quasars)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Karl Eberl, Stuttgart [KE] (A) (essai d'épitaxie par faisceau moléculaire)
Dr. Dietrich Einzel, Garching [DE] (A) (20)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Vienne [FE] (A) (27)
Dr. Roger Erb, Kassel [RE1] (A) (33 essai Phénomènes optiques dans l'atmosphère)
Dr. Christian Eurich, Brême [CE] (A) (Réseaux de neurones d'essai)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Fribourg [TF3] (A) (10, 15 essai théorie de la percolation)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Harald Fuchs, Münster [HF] (A) (Essai de microscopie à sonde à balayage)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hanovre [CF] (A) (07)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Michael Gerding, Kühlungsborn [MG2] (A) (13)
Prof. Dr. Gerd Graßhoff, Berne [GG] (A) (02)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Prof. Dr. Michael Grodzicki, Salzbourg [MG1] (B) (01, 16)
Gunther Hadwich, Munich [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Christoph Heinze, Hambourg [CH3] (A) (29)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Florian Herold, Munich [FH] (A) (20)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Georg Hoffmann, Gif-sur-Yvette, FR [GH1] (A) (29)
Dr. Gert Jacobi, Hambourg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Dr. Catherine Journet, Stuttgart [CJ] (A) (Essai nanotubes)
Prof. Dr. Josef Kallrath, Ludwigshafen, [JK] (A) (04 Essai Méthodes numériques en physique)
Priv.-Doz. Dr. Claus Kiefer, Fribourg [CK] (A) (14, 15 Essai Quantum Gravity)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [Royaume-Uni] (A) (19)
Dr. Uwe Klemradt, Munich [UK1] (A) (20, essai sur les transitions de phase et les phénomènes critiques)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, États-Unis [AK3] (A) (02)
Dr. Berndt Koslowski, Ulm [BK] (A) (Essai de physique des surfaces et des interfaces)
Dr. Bernd Krause, Munich [BK1] (A) (19)
Dr. Jens Kreisel, Grenoble [JK2] (A) (20)
Dr. Gero Kube, Mayence [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdebourg [VL] (A) (04)
Priv.-Doz. Dr. Axel Lorke, Munich [AL] (A) (20)
Dr. Andreas Markwitz, Lower Hutt, Nouvelle-Zélande [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Prof. Dr. Karl von Meyenn, Munich [KVM] (A) (02)
Dr. Rudi Michalak, Augsbourg [RM1] (A) (23)
Helmut Milde, Dresde [HM1] (A) (09)
Günter Milde, Dresde [GM1] (A) (12)
Marita Milde, Dresde [MM2] (A) (12)
Dr. Andreas Müller, Kiel [AM2] (A) (33)
Dr. Nikolaus Nestle, Leipzig [NN] (A, B) (05, 20 essais sur l'épitaxie par faisceau moléculaire, la physique des surfaces et des interfaces et la microscopie à sonde à balayage)
Dr. Thomas Otto, Genève [À] (A) (06)
Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexique [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14)
Dr. Andrea Quintel, Stuttgart [AQ] (A) (Essai sur les nanotubes)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15 Essais Informatique Quantique)
Robert Raussendorf, Munich [RR1] (A) (19)
Ingrid Reiser, Manhattan, États-Unis [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15 essais sur la mécanique quantique et ses interprétations)
Prof. Dr. Siegmar Roth, Stuttgart [SR] (A) (Essai sur les nanotubes)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Dr. Margit Sarstedt, Louvain, B [MS2] (A) (25)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Michael Schmid, Stuttgart [MS5] (A) (Essai sur les nanotubes)
Dr. Martin Schön, Constance [MS] (A) (14)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mayence [RS2] (A) (17)
Prof. Dr. Paul Steinhardt, Princeton, USA [PS] (A) (essai sur les quasicristaux et les quasi-cellules unitaires)
Prof. Dr. Klaus Stierstadt, Munich [KS] (B)
Dr. Siegmund Stintzing, Munich [ES1] (A) (22)
Cornelius Suchy, Bruxelles [CS2] (A) (20)
Dr. Volker Theileis, Munich [VT] (A) (20)
Prof. Dr. Gerald 't Hooft, Utrecht, NL [GT2] (A) (essai renormalisation)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Rolf vom Stein, Cologne [RVS] (A) (29)
Patrick Voss-de Haan, Mayence [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Dr. Hildegard Wasmuth-Fries, Ludwigshafen [HWF] (A) (26)
Manfred Weber, Francfort [MW1] (A) (28)
Priv.-Doz. Dr. Burghard Weiss, Lübeck [BW2] (A) (02)
Prof. Dr. Klaus Winter, Berlin [KW] (A) (essai sur la physique des neutrinos)
Dr. Achim Wixforth, Munich [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, États-Unis [SO] (A) (16)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23 essai supraconducteurs organiques)
Priv.-Doz. Dr. Jörg Zegenhagen, Stuttgart [JZ3] (A) (21 essais de reconstitutions de surfaces)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, Munich [WZ] (A) (20)

Dr. Ulrich Kilian (responsable)
Christine Weber

Priv.-Doz. Dr. Dieter Hoffmann, Berlin

L'abréviation de l'auteur est entre crochets, le nombre entre parenthèses est le numéro du domaine, une liste des domaines se trouve dans l'avant-propos.

Prof. Dr. Klaus Andres, Garching [KA] (A) (10)
Markus Aspelmeyer, Munich [MA1] (A) (20)
Dr. Katja Bammel, Cagliari, I [KB2] (A) (13)
Doz. Hans-Georg Bartel, Berlin [HGB] (A) (02)
Steffen Bauer, Karlsruhe [SB2] (A) (20, 22)
Dr. Günther Beikert, Viernheim [GB1] (A) (04, 10, 25)
Prof. Dr. Hans Berckhemer, Francfort [HB1] (A, B) (29 Essai Sismologie)
Dr. Werner Biberacher, Garching [WB] (B) (20)
Prof. Tamás S. Biró, Budapest [TB2] (A) (15)
Prof. Dr. Helmut Bokemeyer, Darmstadt [HB2] (A, B) (18)
Dr. Thomas Bührke, Leimen [TB] (A) (32)
Jochen Büttner, Berlin [JB] (A) (02)
Dr. Matthias Delbrück, Dossenheim [MD] (A) (12, 24, 29)
Prof. Dr. Martin Dressel, Stuttgart (A) (essai sur les ondes de densité de spin)
Dr. Michael Eckert, Munich [ME] (A) (02)
Dr. Dietrich Einzel, Garching (A) (essai supraconductivité et superfluidité)
Dr. Wolfgang Eisenberg, Leipzig [WE] (A) (15)
Dr. Frank Eisenhaber, Vienne [FE] (A) (27)
Dr. Roger Erb, Cassel [RE1] (A) (33)
Dr. Angelika Fallert-Müller, Groß-Zimmer [AFM] (A) (16, 26)
Stephan Fichtner, Heidelberg [SF] (A) (31)
Dr. Thomas Filk, Fribourg [TF3] (A) (10, 15)
Natalie Fischer, Walldorf [NF] (A) (32)
Dr. Thomas Fuhrmann, Mannheim [TF1] (A) (14)
Christian Fulda, Hanovre [CF] (A) (07)
Frank Gabler, Francfort [FG1] (A) (22)
Dr. Harald Genz, Darmstadt [HG1] (A) (18)
Prof. Dr. Henning Genz, Karlsruhe [HG2] (A) (Essais Symétrie et Vide)
Dr. Michael Gerding, Potsdam [MG2] (A) (13)
Andrea Greiner, Heidelberg [AG1] (A) (06)
Uwe Grigoleit, Weinheim [UG] (A) (13)
Gunther Hadwich, Munich [GH] (A) (20)
Dr. Andreas Heilmann, Halle [AH1] (A) (20, 21)
Carsten Heinisch, Kaiserslautern [CH] (A) (03)
Dr. Marc Hemberger, Heidelberg [MH2] (A) (19)
Dr. Sascha Hilgenfeldt, Cambridge, États-Unis (A) (essai sonoluminescence)
Dr. Hermann Hinsch, Heidelberg [HH2] (A) (22)
Priv.-Doz. Dr. Dieter Hoffmann, Berlin [DH2] (A, B) (02)
Dr. Gert Jacobi, Hambourg [GJ] (B) (09)
Renate Jerecic, Heidelberg [RJ] (A) (28)
Prof. Dr. Josef Kallrath, Ludwigshafen [JK] (A) (04)
Priv.-Doz. Dr. Claus Kiefer, Fribourg [CK] (A) (14, 15)
Richard Kilian, Wiesbaden [RK3] (22)
Dr. Ulrich Kilian, Heidelberg [Royaume-Uni] (A) (19)
Thomas Kluge, Juliers [TK] (A) (20)
Dr. Achim Knoll, Karlsruhe [AK1] (A) (20)
Dr. Alexei Kojevnikov, College Park, États-Unis [AK3] (A) (02)
Dr. Bernd Krause, Munich [BK1] (A) (19)
Dr. Gero Kube, Mayence [GK] (A) (18)
Ralph Kühnle, Heidelberg [RK1] (A) (05)
Volker Lauff, Magdebourg [VL] (A) (04)
Dr. Anton Lerf, Garching [AL1] (A) (23)
Dr. Detlef Lohse, Twente, NL (A) (essai sonoluminescence)
Priv.-Doz. Dr. Axel Lorke, Munich [AL] (A) (20)
Prof. Dr. Jan Louis, Halle (A) (essai théorie des cordes)
Dr. Andreas Markwitz, Lower Hutt, Nouvelle-Zélande [AM1] (A) (21)
Holger Mathiszik, Celle [HM3] (A) (29)
Dr. Dirk Metzger, Mannheim [DM] (A) (07)
Dr. Rudi Michalak, Dresde [RM1] (A) (23 essai de physique des basses températures)
Günter Milde, Dresde [GM1] (A) (12)
Helmut Milde, Dresde [HM1] (A) (09)
Marita Milde, Dresde [MM2] (A) (12)
Prof. Dr. Andreas Müller, Trèves [AM2] (A) (33)
Prof. Dr. Karl Otto Münnich, Heidelberg (A) (Essai de physique de l'environnement)
Dr. Nikolaus Nestlé, Leipzig [NN] (A, B) (05, 20)
Dr. Thomas Otto, Genève [À] (A) (06)
Priv.-Doz. Dr. Ulrich Parlitz, Göttingen [UP1] (A) (11)
Christof Pflumm, Karlsruhe [CP] (A) (06, 08)
Dr. Oliver Probst, Monterrey, Mexique [OP] (A) (30)
Dr. Roland Andreas Puntigam, Munich [RAP] (A) (14)
Dr. Gunnar Radons, Mannheim [GR1] (A) (01, 02, 32)
Dr. Max Rauner, Weinheim [MR3] (A) (15)
Robert Raussendorf, Munich [RR1] (A) (19)
Ingrid Reiser, Manhattan, États-Unis [IR] (A) (16)
Dr. Uwe Renner, Leipzig [UR] (A) (10)
Dr. Ursula Resch-Esser, Berlin [URE] (A) (21)
Dr. Peter Oliver Roll, Ingelheim [OR1] (A, B) (15)
Hans-Jörg Rutsch, Walldorf [HJR] (A) (29)
Rolf Sauermost, Waldkirch [RS1] (A) (02)
Matthias Schemmel, Berlin [MS4] (A) (02)
Prof. Dr. Erhard Scholz, Wuppertal [ES] (A) (02)
Dr. Martin Schön, Konstanz [MS] (A) (14 essai théorie de la relativité restreinte)
Dr. Erwin Schuberth, Garching [ES4] (A) (23)
Jörg Schuler, Taunusstein [JS1] (A) (06, 08)
Dr. Joachim Schüller, Dossenheim [JS2] (A) (10)
Richard Schwalbach, Mayence [RS2] (A) (17)
Prof. Dr. Klaus Stierstadt, Munich [KS] (B)
Dr. Siegmund Stintzing, Munich [ES1] (A) (22)
Dr. Berthold Suchan, Giessen [BS] (A) (Dissertation sur la philosophie des sciences)
Cornelius Suchy, Bruxelles [CS2] (A) (20)
Dr. Volker Theileis, Munich [VT] (A) (20)
Prof. Dr. Stefan Theisen, Munich (A) (essai théorie des cordes)
Dr. Annette Vogt, Berlin [AV] (A) (02)
Dr. Thomas Volkmann, Cologne [TV] (A) (20)
Rolf vom Stein, Cologne [RVS] (A) (29)
Dr. Patrick Voss-de Haan, Mayence [PVDH] (A) (17)
Dr. Thomas Wagner, Heidelberg [TW2] (A) (29)
Manfred Weber, Francfort [MW1] (A) (28)
Dr. Martin Werner, Hambourg [MW] (A) (29)
Dr. Achim Wixforth, Munich [AW1] (A) (20)
Dr. Steffen Wolf, Berkeley, États-Unis [SO] (A) (16)
Dr. Stefan L. Wolff, Munich [SW1] (A) (02)
Priv.-Doz. Dr. Jochen Wosnitza, Karlsruhe [JW] (A) (23)
Dr. Kai Zuber, Dortmund [KZ] (A) (19)
Dr. Werner Zwerger, Munich [WZ] (A) (20)

Articles sur le sujet

Charge.

Histoire

Les phénomènes résultant de l'électricité sont connus depuis longtemps, l'événement le plus célèbre et le plus spectaculaire en météorologie est la foudre. L'apparition du choc électrique, que certains poissons comme le rayon électrique ou l'anguille électrique utilisent pour attraper des proies, était dans l'Egypte ancienne vers 2750 & # 160b. & # 160Chr. connu. & # 911 & # 93 Dans l'Antiquité, les Grecs de l'Antiquité connaissaient déjà la charge électrostatique dans l'ambre, qu'ils appelaient électron a été désigné. Cette connaissance est attribuée au philosophe naturel Thalès de Milet, qui a vécu vers 600 & # 160v. & # 160Chr. traite des charges électrostatiques.

Au 1er siècle avant JC & # 160Chr. Des pots en argile parthe ont été utilisés près de Bagdad, qui ont été trouvés par Wilhelm König en 1936 et sont également connus sous le nom de batterie de Bagdad. Ces récipients contenaient une tige de fer et un cylindre de cuivre scellés avec de l'asphalte. Des tests effectués par le musée Roemer et Pelizaeus à Hildesheim ont montré qu'avec cet arrangement et du jus de raisin comme électrolyte, une tension de 0,5 160 V pouvait être atteinte. Son utilisation comme type de batterie est controversée.

Une application ciblée et pratique de l'électricité n'a eu lieu qu'au début des temps modernes. En 1601, le Britannique William Gilbert enquêta systématiquement sur la charge électrique de nombreuses substances et introduisit le nom "Electrica". Vers 1663, le maire de Magdebourg, Otto von Guericke, développa une boule de soufre rotative qui, frottée à la main, révèle les forces cosmiques (virtutes mundanae) devrait prouver. En 1706, Francis Hauksbee met au point une machine à électrification par friction, dont la boule n'est plus en soufre, mais en verre, destinée à la recherche des effets électriques. & # 912 & # 93 Ces machines électrifiantes et similaires ont été principalement utilisées pour le divertissement social au cours des décennies suivantes.

En 1745, le physicien néerlandais Pieter van Musschenbroek inventa la bouteille de Leiden, également connue en Allemagne sous le nom de "bouteille Kleist", indépendamment et un an après, Ewald Jürgen Georg von Kleist. La bouteille de Leiden est considérée comme le premier condensateur à stocker des tensions électriques.

En 1733, Dufay a découvert qu'il existe deux formes opposées de charge électrique, qu'il a d'abord appelées résine et électricité de verre. Cette découverte a servi de base à la désignation de charge électrique positive et négative & # 913 & # 93. L'Américain Benjamin Franklin a trouvé des connexions avec l'électricité atmosphérique vers 1752 après l'électricité statique déjà connue. Il inventa le paratonnerre et interpréta le phénomène comme Pôle positif et Pôle négatif.

Vers 1770, le médecin italien Luigi Galvani a observé le tressaillement d'une grenouille morte avec une machine électrisante sur des pattes de grenouilles. Il est devenu connu que l'électricité peut également déclencher le mouvement. L'électricité "animale" sur les pattes des grenouilles est l'énergie électrochimique transmise et la base de l'électrochimie.

1775 erfand der italienische Physiker Alessandro Volta das Elektrophor, ein Gerät zur Ladungstrennung mit Hilfe der Influenz. Fünf Jahre später entwickelte er die Voltasche Säule, die aus den Metallen Kupfer und Zink und einem Elektrolyt besteht. Diese Batterie ermöglicht die erstmalige Stromerzeugung ohne Reibung, nur aus gespeicherter chemischer Energie. Die Voltasche Säule wurde für viele Jahre die wichtigste Apparatur zur Gleichstromerzeugung.

Am Ende des 18. Jahrhunderts fanden und beschrieben Charles Augustin de Coulomb, Joseph Priestley, Henry Cavendish und John Robison unabhängig voneinander das Gesetz zur Beschreibung der Kraft zwischen zwei elektrischen Ladungen, das als Coulomb-Gesetz bekannt ist. Der deutsche Physiker Georg Simon Ohm formulierte den grundlegenden Zusammenhang zwischen elektrischem Strom und elektrischer Spannung an linearen elektrischen Widerständen. Dieser Zusammenhang wird später als ohmsches Gesetz bekannt.

Um 1810 erzeugte der Chemiker Humphry Davy zwischen zwei Kohlestiften, die mit einer Batterie als Stromversorger verbunden waren, einen Lichtbogen und schaffte damit die Grundlagen für die Kohlebogenlampe.

Um 1820 beobachtete Hans Christian Ørsted die Ablenkung einer Magnetnadel durch Stromeinfluss. André-Marie Ampère, ein französischer Physiker, deutete und beschrieb darauf aufbauend die Stärke des Magnetfeldausschlags in Abhängigkeit zur Stromstärke. Er erfand das „Amperemeter“, die Theorie des elektrischen Telegraphen, erstmals angewandt von Carl Friedrich Gauß und Wilhelm Eduard Weber, und den Elektromagneten. Er ist Begründer der Theorie vom Elektromagnetismus und Namensgeber der physikalischen Einheit des elektrischen Stromes Ampere.

Der britische Physiker Michael Faraday gilt als einer der Begründer der Elektrodynamik. Er formulierte erstmals das Induktionsgesetz und beschäftigte sich in weiteren Arbeiten mit den Gesetzen der Elektrolyse. Er schuf so die Grundlagen zur Erfindung der Telegraphie. Der schottische Physiker James Clerk Maxwell konzipierte 1864 die grundlegende Theorie der klassischen Elektrodynamik in Form der Maxwell-Gleichungen und verband damit Effekte ruhender und bewegter Ladungen sowie deren Felder zur Beschreibung elektromagnetischer Phänomene. Aus diesen Gesetzmäßigkeiten folgerte er die Existenz der elektromagnetischen Wellen. Er identifizierte das Licht als eine Erscheinungsform von elektromagnetischen Wellen.

Mitte des 19. Jahrhunderts, nachdem die notwendigen Gesetzmäßigkeiten bekannt waren, setzte eine breite Anwendung der Elektrizität ein. Diese technischen Anwendungen werden unter dem Begriff Elektrotechnik zusammengefasst. Beispiele sind die um 1844 von Samuel F. B. Morse erfundene Telegraphenlinie in Amerika, die im gleichen Jahr von Louis Joseph Deleuil installierte und erstmalige elektrische Beleuchtung eines öffentlichen Platzes, des Place de la Concorde in Paris, mit Bogenlicht und die 1866 von Werner von Siemens entwickelte elektrische Maschine.

1882 gelang die erste Fernübertragung von elektrischer Energie über 57 km mit der Gleichstromfernübertragung Miesbach-München. Vier Jahre später begründete Nikola Tesla mit Hilfe seines Sponsors George Westinghouse die heute gebräuchliche elektrische Energieübertragung mittels Wechselstrom. 1891 gelang die erste Fernübertragung von heute in der Energietechnik üblichen Dreiphasenwechselstrom mit der Drehstromübertragung Lauffen–Frankfurt über 176 km.

In den Folgejahren kam es in der Elektrotechnik zu einer zunehmenden Spezialisierung. Während die nach wie vor eng mit dem Maschinenbau verbundene elektrische Energietechnik zu der Energieversorgung von Haushalten, Betrieben und Fabriken diente, verfolgte der Zweig der Nachrichtentechnik das Ziel, Information wie Nachrichten mit geringen zeitlichen Verzögerung über weite Distanzen zu übertragen. Um� führte Guglielmo Marconi in Bologna erste Funkversuche durch. Er baute hierbei auf den Entdeckungen von Heinrich Hertz, Alexander Stepanowitsch Popow und Édouard Branly auf. Ein Jahr später gelang Popow auf funktechnischem Wege die Übertragung der Worte „Heinrich Hertz“ während einer Demonstration vor der Russischen Physikalischen Gesellschaft.

Das 20. Jahrhundert ist durch eine starke Erweiterung des Theoriegebäudes gekennzeichnet. Die klassische Elektrodynamik von Maxwell wurde im Rahmen der speziellen Relativitätstheorie zur relativistischen Elektrodynamik erweitert. Mitte des 20. Jahrhunderts erfolgte, insbesondere durch Arbeiten des amerikanischen Physikers Richard Feynman, die Erweiterung zu der Quantenelektrodynamik.

In der technischen Anwendung wurde 1897 von Ferdinand Braun die Kathodenstrahlröhre entwickelt, die die Grundlage der ersten Fernsehapparate darstellt. 1911 beobachtete der Niederländer Heike Kamerlingh Onnes als erster Mensch den Effekt der Supraleitung. Mitte des 20. Jahrhunderts entwickelten Walter H. Brattain, John Bardeen und William Shockley den Transistor, der in den Folgejahren die Grundlage der ersten integrierten Schaltungen und der Computertechnik war.


Darstellung der Stromflussrichtung senkrecht zur Zeichenebene

Um Richtungen quer zur Zeichenebene darzustellen, werden bei der elektrischen Stromrichtung die Symbole (aus der Ebene heraus zum Betrachter) und (vom Betrachter in die Ebene hinein) verwendet. Als Eselsbrücke zum Behalten dieser Symbole kann man sich einen Pfeil vorstellen: Wenn der Pfeil auf den Beobachter zufliegt, ist nur der Punkt der Spitze zu sehen. Fliegt der Pfeil von dem Beobachter weg, so sind Federn am Ende des Pfeils als Kreuz zu sehen.


Elektrischer Strom ist fließende elektrische Ladung. In Physik und Technik wird die Stromrichtung oder Richtung der elektrischen Stromstärke definiert als die Richtung, in der sich positive elektrische Ladung bewegt. [1] [2] Außerhalb von Strom- oder Spannungsquellen fließt sie (und damit der Strom) – der Feldlinienrichtung des elektrischen Feldes folgend – vom Pluspol zum Minuspol. Innerhalb von Strom- oder Spannungsquellen hingegen, fließen positive Ladungsträger vom Minuspol zum Pluspol. So wird der Stromkreis wieder geschlossen. Dies gilt allgemein und unabhängig von der Art der Ladungsträger als logische Konsequenz aus der Kontinuitätsgleichung.

In einem Plan für eine elektrische Schaltung wird die elektrische Stromrichtung durch einen Zählpfeil gekennzeichnet, dessen Richtung üblicherweise der elektrischen Stromrichtung entspricht. Sollte sich herausstellen, dass die elektrische Stromrichtung dem Zählpfeil entgegengesetzt ist, so erhält die Stromstärke bezüglich der Pfeilrichtung einen negativen Wert.

Umgangssprachlich tauchen die miteinander konkurrierenden Begriffe der sogenannten „technischen“ und „physikalischen“ Stromrichtung auf. Tatsächlich aber ist die elektrische Stromrichtung identisch mit der „technischen“ Stromrichtung und in der Physik und Elektrotechnik genau gleich definiert. [3] [4]

Der Begriff der „technischen Stromrichtung“ ist in erster Linie historisch bedingt er geht von einem Strom von Ladungen aus, die sich – der Feldlinienrichtung des elektrischen Feldes folgend – vom positiven zum negativen Spannungspol bewegen. Dass es dagegen in metallischen Leitern die Elektronen sind, die als Ladungsträger den Stromfluss bewirken und dabei genau umgekehrt vom negativen zum positiven Pol fließen, war zur Zeit dieser Begriffsbildung noch unbekannt. [5] Die Definition der elektrischen Stromrichtung wurde auch nach der Entdeckung der Elektronen fast ein Jahrhundert später als einheitliche Konvention beibehalten. Die Festlegung des Vorzeichens der Stromrichtung ist unmittelbar verknüpft mit der Festlegung des Vorzeichens der Ladung die ursprünglich angenommene einzige Art von Ladungen war positiv. Die Ladung der in Gegenrichtung bewegten Elektronen wurde dann unter Beibehaltung des elektrostatischen Kraftgesetzes als negativ erklärt.

Im Unterschied dazu bezeichnet der Begriff der „physikalischen Stromrichtung“ nicht den Strom elektrischer Ladung, sondern einen Massen-, Volumen-, Teilchenstrom oder quantenmechanischen (Aufenthalts-)Wahrscheinlichkeitsstrom von elektrischen Ladungsträgern. Er kennzeichnet somit die Bewegung der elektrischen Ladungsträger unabhängig von ihrer jeweiligen Ladung. Teilweise wird offen gelassen, um welche Ladungsträger es sich handelt oft sind Elektronen in Metallen gemeint, die per Konvention eine negative Ladung besitzen. Dann ist die Elektronenströmung („physikalische Stromrichtung“), wie in der Abbildung verdeutlicht, der (positiven) Ladungsströmung („technische Stromrichtung“) entgegengerichtet.

Da es neben den Elektronen eine Reihe weiterer Ladungsträger gibt, die positiv oder negativ geladen zum Ladungstransport und damit zum Strom beitragen können – in Halbleitern, bei der Elektrolyse oder in Gasentladungen –, ist der Begriff der „physikalischen Stromrichtung“ nicht nur missverständlich, sondern fallweise auch mehrdeutig. Es ist also besser, von vornherein von der Bewegungsrichtung der jeweiligen Ladungsträger zu sprechen, beispielsweise von der „Elektronenflussrichtung“ oder der Bewegungsrichtung der negativen oder positiven Ionen oder Defektelektronen.

Das tatsächlich gar nicht bestehende Gegeneinander von Technik und Physik entsteht nur, wenn nicht sorgfältig zwischen Ladung und Ladungsträgern unterschieden wird.

Als „konventionelle Stromrichtung“ wird die Stromrichtung im äußeren Stromkreis vom Pluspol zum Minuspol der Quelle bezeichnet. Sie stimmt mit der technischen Stromrichtung überein. [6] [7] [8]

Um Richtungen senkrecht zur Zeichenebene darzustellen, werden bei der elektrischen Stromrichtung die Symbole (aus der Ebene heraus zum Betrachter) und (vom Betrachter in die Ebene hinein) verwendet. Als Eselsbrücke zum Behalten dieser Symbole lässt sich einen Pfeil vorstellen: Wenn der Pfeil auf den Beobachter zufliegt, ist nur der Punkt der Spitze zu sehen. Fliegt der Pfeil von dem Beobachter weg, so sind Federn am Ende des Pfeils als Kreuz zu sehen.

Ein elektrischer Strom, dessen Richtung sich in regelmäßiger Wiederholung ändert, wird als Wechselstrom bezeichnet. Ein Zählpfeil für die Richtung des elektrischen Stroms hat Sinn bei Augenblickswertbetrachtungen. Ferner wird der Zählpfeil in Schaltplänen so angewendet, dass er die Richtung des mittleren Energieflusses anzeigt. [9] Diese ist unabhängig von der wechselnden elektrischen Stromrichtung. Damit kennzeichnet die Pfeilrichtung das Vorzeichen der über die Leitung geführten Wirkleistung mit der dabei üblichen Vorzeichenregelung.


Hausgebrauch

Für den Hausgebrauch benötigt man das Verständnis der elektrischen Arbeit, wenn man elektrische Verbraucher wie beispielsweise einen Kühlschrank oder elektrische Lampen kauft. Hier ist es wichtig zu wissen, dass die Zeit, die das Gerät in Betrieb ist, die wesentliche Größe zur Bestimmung der vom elektrischen Gerät benötigten Energie ist. Der Bedarf an elektrischer Stromstärke in Ampere ist konstruktionsbedingt vom Hersteller festgelegt und entscheidet sich deshalb beim Kauf. Die Netzspannung beträgt in der Regel 230 Volt bzw. 400 Volt Wechselspannung, es sei denn, man greift auf Batterien, Akkumulatoren oder ein Netzteil mit geringerer Spannung zurück.


Video: Le champ électrique شرح المجال الكهربائي (Juillet 2022).


Commentaires:

  1. Kildare

    Après tout et comme je n'y ai pas pensé plus tôt

  2. Vojar

    Je pense que je fais des erreurs. Je propose d'en discuter.

  3. Trista

    Et j'ai bien aimé…

  4. Doutilar

    À mon avis, vous commettez une erreur. Je peux le prouver.

  5. Lorren

    Bravo, cette magnifique idée est à peu près



Écrire un message